Gödel's Theorem
In 1931, the Czech-born mathematician Kurt Gödel demonstrated that within any given branch of mathematics, there would always be some propositions that couldn't be proven either true or false using the rules and axioms ... of that mathematical branch itself. You might be able to prove every conceivable statement about numbers within a system by going outside the system in order to come up with new rules an axioms, but by doing so you'll only create a larger system with its own unprovable statements. The implication is that all logical system of any complexity are, by definition, incomplete; each of them contains, at any given time, more true statements than it can possibly prove according to its own defining set of rules.
Gödel's Theorem has been used to argue that a computer can never be as smart as a human being because the extent of its knowledge is limited by a fixed set of axioms, whereas people can discover unexpected truths ... It plays a part in modern linguistic theories, which emphasize the power of language to come up with new ways to express ideas. And it has been taken to imply that you'll never entirely understand yourself, since your mind, like any other closed system, can only be sure of what it knows about itself by relying on what it knows about itself.
- Jones and Wilson, An Incomplete Education
The proof of Gödel's Incompleteness Theorem is so simple, and so sneaky, that it is almost embarassing to relate. His basic procedure is as follows:
Someone introduces Gödel to a UTM, a machine that is supposed to be a Universal Truth Machine, capable of correctly answering any question at all.
Gödel asks for the program and the circuit design of the UTM. The program may be complicated, but it can only be finitely long. Call the program P(UTM) for Program of the Universal Truth Machine.
Smiling a little, Gödel writes out the following sentence: "The machine constructed on the basis of the program P(UTM) will never say that this sentence is true." Call this sentence G for Gödel. Note that G is equivalent to: "UTM will never say G is true."
Now Gödel laughs his high laugh and asks UTM whether G is true or not.
If UTM says G is true, then "UTM will never say G is true" is false. If "UTM will never say G is true" is false, then G is false (since G = "UTM will never say G is true"). So if UTM says G is true, then G is in fact false, and UTM has made a false statement. So UTM will never say that G is true, since UTM makes only true statements.
We have established that UTM will never say G is true. So "UTM will never say G is true" is in fact a true statement. So G is true (since G = "UTM will never say G is true").
"I know a truth that UTM can never utter," Gödel says. "I know that G is true. UTM is not truly universal."
With his great mathematical and logical genius, Gödel was able to find a way (for any given P(UTM)) actually to write down a complicated polynomial equation that has a solution if and only if G is true. So G is not at all some vague or non-mathematical sentence. G is a specific mathematical problem that we know the answer to, even though UTM does not! So UTM does not, and cannot, embody a best and final theory of mathematics ...
Although this theorem can be stated and proved in a rigorously mathematical way, what it seems to say is that rational thought can never penetrate to the final ultimate truth ... But, paradoxically, to understand Gödel's proof is to find a sort of liberation. For many logic students, the final breakthrough to full understanding of the Incompleteness Theorem is practically a conversion experience. This is partly a by-product of the potent mystique Gödel's name carries. But, more profoundly, to understand the essentially labyrinthine nature of the castle is, somehow, to be free of it.
Rucker, Infinity and the Mind
In other words:
“All mathematicians are liars.” A mathematician cannot state that this statement is true.
If he is not lying then the statement is true. If the statement is true then he's lying and the statement is false.
No comments:
Post a Comment